Traditional Thrombectomy Using Catheter SuctionThrombolysis Is Enough.

Jae-Hwan Lee, MD, PhD

Cardiovascular Center in Chungnam National University Hospital

Catheter-Based Thrombectomy (CBT)

<u>Arterial</u>

- Acute limb ischemia
- STEMI
- Ischemic stroke

<u>Venous</u>

- Deep vein thrombosis
- Pulmonary embolism
- AV fistula occlusion

ALI; Endovascular Thrombus Management

<u>Thrombolysis</u>

Catheter-directed thrombolysis (CDT)

<u>Mechanical Adjuncts</u>

- Manual aspiration thrombectomy (MAT) Sheath / Catheter
- Mechanical fragmentation Rotarex, Jetstream
- Rheolytic thrombectomy Angiojet
- Aspiration thrombectomy

- Aspirex, ThromCat, Indigo, Megavac

Ultrasonic / Laser

Manual vs. Mechanical Thrombectomy

Catheter Aspiration Thrombectomy: Syringe suction used to aspirate the debris

Mechanical Thrombectomy: Saline jets or rotating catheter head to breakup thrombus before its aspiration

Manual Devices include: Diver[™], Diver[™] CE, Export[®], Pronto[™], QuickCat, Rescue[™], Thrombuster[®], and TransVascular Aspiration Catheter[®]. Mechanical devices include: AngioJet[®] (and X-Sizer[®].)

Mechanical Devices for Thrombus Removal

Now available in Korea

Jetstream, BSC

Rotarex, Straub Medical

Most Simple & Cheap Way; Thrombosuction by a sheath

Most Simple & Cheap Way; Thrombosuction by a sheath

Ipsilateral approach; My Aspiration Devices Ansel sheath + Sheath dilator + 0.014" Command ES GW

For thrombusuction

Tuohy-borst type

Short Y connector

Contralateral approach; Shuttle sheath + 0.035" compatible Dilator + 0.035" Amplatzer extrastiff GW

My Personal Aspiration Devices

<u>lliac</u>

- Ipsilateral or Contralrateral
- 7 Fr Ansel sheath + Sheath dilator + 0.014" Command ES GW
 <u>Femoral</u>
- Ipsilateral; 7 Fr Ansel sheath + Sheath dilator + 0.014" Command ES GW
- Contralateral; 6-7 Fr Shuttle sheath + Sheath dilator
 - + 0.014" Command ES GW → for soft aortoiliac anatomy

+ 0.035" Amplatzer extrastiff GW → for difficult aortoiliac anatomy <u>Proximal BTK</u>; 5 Fr Heartrail through the Ansel / Shuttle sheath <u>Foot level</u>; Thrombuster or Export catheter

Representative Cases

Case

- 75 / M, ALI, Rutherford IIa
- H/O CHF with pulmonary edema, 2010
 - severe LV dysfunction, EF 28% with LAA thrombi
 - \rightarrow F/U Lost
 - \rightarrow Right lower leg pain for 5 days
- Atrial fibrillation

Angiogram

Thrombus aspiration from Popliteal, ATA and PTA

Ipsilateral antegrade 7 Fr Ansel sheath

Overnight intralesional UK infusion → Followed by adjunctive balloon angioplasty

Case

- 61 / F, ALI Rutherford I
- Slowly progressing dyspnea, NYHA Fc 3
- Right leg pain, coldness and numbress for 2 weeks
- ECG; Afib
- TTE; Severe MS, MVA 0.9 cm², LAA thrombi

Right popliteal embolic occlusion

Baseline

Aspiration with 7Fr sheath

Angiogram using suction catheter

Thrombectomy using both sheath and suction catheter

Sheath aspiration for P3

Final angiogram of the 1st procedure

Thrombus on the table

After overnight UK infusion, 100,000U/hr

Next day angiogram

Final angiogram

- 41 / F, Antiphospholipid syndrome with arm embolism
- Smoker
- Right hand color change, coldness and pain for 3 weeks
- Poor right ulnar and radial pulsation
- Normal left U/E and both L/E angiogram

 \rightarrow Ruled out Buerger's disease

Lupus anticoagulant Ab (+)

Brachial artery embolic occlusion

Femoral approach 5 Fr 110 cm long Shuttle sheath 0.014" Command GW Thrombuster catheter

After overnight UK infusion

Kissing balloon angioplasty

Case

- 70 / F
- C.C : Right leg resting pain for 10 days
 - Right 1st toe gangrenous change from 5 days ago
- Risk Factors : DM and Hypertension
- 2011.6 s/p PCI at LAD, LCx, RCA (6 stents), Other Hospital
- Cr 0.9 mg/dL
- ECG : Atrial fibrillation
- TTE : ischemic insult of RCA, LVEF=59%
- ABI : Unchekable / 1.39

Foot photo

ABI

4 months ago

L/E angiogram

Iliac and femoral thrombectomy

Additional BTK Intervention and Toe Amputation

Initial

3 days after surgical thrombectomy of Iliac & femoral a.

Toe amputation after BTK intervention

One year later

- Anticoagulation with warfarin ~
- Femur neck fracture, left
 → Bipolar hemiarthroplasty
 C-spine laminoplasty
- Warfarin discontinued during two consecutive surgery
 → Left 1st toe pain and gangrene developed during admission

Angiogram

Surgeon gave a skeptical response.

External and Internal iliac Aspiration with a 6 Fr Shuttle sheath + 0.035" Amplatzer extrastiff GW

lliac to DFA recanalization

IVUS evaluation to find SFA ostium

Wiring to SFA

Thrombi aspiration as much as possible → Intralesional UK infusion for 6 hrs → Balloon angioplasty, 5.0x150mm

After overnight UK infusion

Case of Mechanical Thrombectomy

ALI case with toe gangrene - subacute course

46/M

Polycythemia vera

Hb 20.5g/dL, WBC 20,500/uL, PLT 512K/uL

Right calf pain, coldness and 1st toe gangrene for 1 month

Jetstream thrombectomy

DEB 6.0x120 mm

59/M, Severe resting claudication for 3 weeks

Prolonged balloon dilatation with BTK thrombectomy

6 months later T.T.

74/F, ALI stage IIa, 10 days ago onset

74/F, ALI stage IIa, 10 days ago onset

74/F, ALI stage IIa, 10 days ago onset

6 months later, asymptomatic, but

baPWV 1885

1541 +22% L-Bra.

SYS138 MAP103

DIA 84

L-Ank.

SYS139

MAP101

DIA 83

PP 56

ABI 1.01

Heart-Brachial(B) Heart-Ankle(A) Brachial-Ankle(A-P

54

PP

ALI Data From Our Center - Baseline

	Total (n=58)	Manual Aspiration (n=39)	Jetstream (n=19)	P-value
Age	72.5±13.5	68.2±12.8	81.2±10.5	<0.001
Sex(male)	40(69.0%)	28(71.8%)	12(63.2%)	0.505
DM	26(44.8%)	20(51.3%)	6(31.6%)	0.157
IHD	26(44.8%)	20(51.3%)	6(31.6%)	0.157
Previous CI	13(22.4%)	9(23.1%)	4(21.1%)	0.862
CKD	13(22.4%)	7(17.9%)	6(31.6%)	0.243
HTN	44(75.9%)	29(74.4%)	15(78.9%)	0.702
DL	5(8.6%)	5(12.8%)	0(0.0%)	0.103
AF	20(34.5%)	12(30.7%)	8(42.1%)	0.394
Cancer	8(13.8%)	4(10.2%)	4(21.1%)	0.263
Smoking	13(22.4%)	9(23.1%)	4(21.1%)	0.862

ALI Data From Our Center – Presentation & Lesion

	Total (n=58)	Manual Aspiration (n=39)	Jetstream (n=19)	P-value
Sx duration (day)	18.7±25.3	19.9±28.2	16.3±16.4	0.550
Onset of Sx				
Acute (<14day)	39(67.2%)	28(71.8%)	11(57.9%)	0.290
Subacute (>2wk)	19(38.0%)	11(57.9%)	8(42.1%)	0.640
Rutherford grade				
I	34(58.6%)	25(64.1%)	9(47.3%)	0.225
IIa	10(17.2%)	7(17.9%)	3(15.8%)	0.838
IIb	7(24.1%)	7(17.9%)	7(36.8%)	0.115
Proximal extent				
Iliac	9(15.5%)	6(15.4%)	3(15.8%)	0.968
Femoral	31(53.4%)	15(38.5%)	16(84.2%)	0.001
Popliteal	12(20.7%)	12(30.8%)	0(0.0%)	0.007
Tibial	6(10.3%)	5(12.8%)	0(0.0%)	0.103
Sheath diameter(F)	6.21±0.85	5.87±0.80	6.89±0.46	<0.001

ALI Data From Our Center – Procedure & Outcome

	Total (n=58)	Manual Aspiration (n=39)	Jetstream (n=19)	P-value
Failure	4(6.9%)	3(7.7%)	1(5.3%)	0.732
Pre-TIMI flow	0.17±0.46	0.26±0.55	0.0±0.00	0.047
Post-TIMI flow	2.57±0.68	2.54±0.72	2.63±0.60	0.606
Adjunctive Tx				
UK usage	50(86.2%)	34(87.2%)	16(84.2%)	0.758
Balloon	53(91.4%)	35(89.7%)	18(94.7%)	0.525
Balloon+Stent	5(8.6%)	4(10.3%)	1(5.3%)	0.525
30d primary patency	50(86.2%)	34(87.1%)	16(84.2%)	0.758
Failure	4(6.9%)	3(7.7%)	1(5.3%)	0.732
Any amputation	6(10.3%)	5(12.8%)	1(5.3%)	0.375
Limb salvage	52(91.2%)	34(89.5%)	18(94.7%)	0.508
Reintervention	10(17.2%)	5(12.8%)	5(26.3%)	0.202
Time to 1 st reinterv, d	10.5 ± 33.4	8.28±31.3	15.05±37.7	0.473

ALI Data From Our Center – Procedure & Outcome

	Total (n=58)	Manual Aspiration (n=39)	Jetstream (n=19)	P-value
UK use	48(82.8%)	33(84.6%)	15(78.9%)	
UK dose (10,000IU)	56.5±36.9	64.8±35.3	49.3±33.3	0.158
Procedure time (min)	102.9±43.4	95.5±46.5	118.2±32.0	0.037
Radiation time (min)	40.9±19.9	34.6±16.6	53.7±20.2	0.057
Contrast dose (cc)	162.6±63.6	150.9±66.2	186.6±51.3	0.068
Complication				
Any	19(32.8%)	10(25.6%)	9(47.4%)	0.098
Embolism	20(34.5%)	10(25.6%)	10(52.6%)	0.001
Hematoma	1(1.7%)	1(2.6%)	0(0.0%)	0.481
Bleeding	4(6.9%)	4(10.3%)	0(0.0%)	0.148
Respiratory distress	1(1.7%)	1(2.6%)	0(0.0%)	0.481
Perforation	1(1.7%)	0(0.0%)	1(5.3%)	0.148
Mortality	2(3.4%)	2(5.2%)	0(0.0%)	0.315

Manual Aspiration vs. Mechanical Thrombectomy

	Manual Aspiration Thrombectomy	Mechanical Thrombecomy		
Pros	Less invasive, Cheaper No special device needed Smaller catheter applicable Less time consuming Smaller radiation & contrast dose	 More efficient thrombus removal → reduce duration and amount of thrombolytic agents Rapid reperfusion More effective on organized thrombi or combined atherosclerosis 		
Cons	Less effective thrombus removal More thrombolytic agent needed - longer duration, larger amount - pt's inconvenience, more bleeding risk Repetitive session may be needed	Specialized device should always be prepared in the cath lab → \$2,000 More embolization risk Filter device sometimes needed Potential risk of vessel damage		

No randomized comparison, No large outcome data → Clinical outcome difference not defined yet Economic burden difference? No answer

?

Manual Aspiration vs. Mechanical Thrombectomy

- We definitely need more data.
- Routine use of mechanical device is not desirable.
- We must establish an appropriate treatment strategy based on the patient and the condition of the lesion.

ALI Thrombus - Mechanical vs. Manual?

ALI Thrombus - Mechanical vs. Manual?

We must compare the gain and the yarn

For Making Good Footprints

1000

122

Thanks for the Time